квантовые
стандарты частоты оптического диапазона. О. с. ч. по сравнению с квантовыми стандартами
частоты (См.
Квантовые стандарты частоты)
радиодиапазона имеют важные преимущества: более высокую стабильность
частоты Опт
ические станд
арты
частоты10
-13, а в перспективе Опт
ические станд
арты
частоты10
-15 - 10
-16 (в диапазоне СВЧ - 10
-12); возможность создания в одном приборе эталонов
частоты (т. е. времени) и длины (интерферометрические измерения длины волны).
Основным элементом О. с. ч. является
Газовый лазер (2 на
рис. 1), работающий в спец. режиме, который позволяет выделять из относительно широкой спектральной линии (см. Ширина спектральных линии (См.
Ширина спектральных линий)) чрезвычайно узкие пики, фиксирующие положение вершины спектральной линии ν
0 (центральной
частоты перехода). Спектральные линии газа в оптическом диапазоне из-за
Доплера эффекта имеют тонкую структуру. Они состоят из смещённых линий однородной ширины, излучаемых отдельными атомами (
рис. 2). В слабых световых полях эта структура не проявляется. В мощных же полях происходит избирательное поглощение энергии частицами, обладающими определённой скоростью, в результате чего в контуре спектральной линии "выжигаются" узкие провалы (минимумы мощности излучения) с шириной Г, равной однородной ширине линии (
рис. 3). Т. к. в резонаторе лазера распространяются 2 волны, бегущие навстречу друг другу, то каждая из них резонансно поглощается "своей" группой атомов, отличающихся.знаком проекции скорости на ось резонатора:
±k, где
k =
с (ν- ν
0)/ν
0. Поэтому в спектральной линии выжигаются 2 провала. Только если генерация лазера возбуждается на частоте резонатора, соответствующей вершине спектральной линии ν
0, обе бегущие волны поглощаются одними и теми же частицами и 2 провала сливаются в 1 (
рис. 4).
Этот эффект, обнаруженный в 1962-63 американскими учёными У. Ю. Лэмбом и У. Р. Беннеттом, дал возможность принять в качестве репера частоты частоту генерации лазера, "привязанную" к частоте ν0 квантового перехода не по доплеровской ширине (2 на рис. 2), а по однородной ширине Г линии, что даёт точность Оптические стандарты частоты10-10 - 10-11. Однако эта точность не была бы достигнута, если бы не был ослаблен эффект смещения (сдвиг) спектральной линии, обусловленный соударениями частиц газа между собой, что возможно при уменьшении давления. Для этого в резонатор лазера вводится ячейка с поглощающим газом (3 на рис. 1). Если при изменении частоты генерации в центре спектральной линии излучения появляется минимум мощности (рис. 4), то в центре линии поглощения этот же эффект приводит к максимуму мощности той же однородной ширины Г (рис. 5, а). Благодаря низкому давлению в поглощающей ячейке (10-3 мм рт. ст., или 0,13 н/м2) эта частота стабильна. Осуществленный О. с. ч. с гелий-неоновой усиливающей и метановой поглощающей ячейками (λ = 3,39 мкм) имеет γ = 300-500 кгц и относительную стабильность частоты Оптические стандарты частоты10-13, что означает поддержание частоты Оптические стандарты частоты1014 гц с точностью до 10 гц.
Дальнейший прогресс в развитии О. с. ч. связан с возможностью выделения ещё более узких линий, фиксирующих частоту квантовых переходов на несколько порядков уже однородной ширины Г спектральной линии. Это осуществляется в лазере с кольцевым резонатором, работающем как в одноволновом, так и в двухволновом режимах (рис. 6). При этом мощность излучения лазера из-за эффектов спектрального "выгорания" линии, пространственного выгорания среды и фазового взаимодействия на частотах, близких к центральной частоте перехода, перераспределяется между волнами разных типов. Это приводит к возникновению узких резонансных пиков, которые могут быть на несколько порядков более узкими и более резкими, чем в случае пиков мощности линейного лазера. Воспроизводимость частоты кольцевых лазеров с метановой поглощающей ячейкой такая же, как и в случае линейных лазеров. Существуют и др. методы стабилизации частоты лазеров.
Лит.: Квантовая электроника. Маленькая энциклопедия, М., 1969; Басов Н. Г., Беленов Э. М., Сверхузкие спектральные линии и квантовые стандарты частоты, "Природа", 1972, № 12.
Э. М. Беленов.
Рис. 1. Схема оптического стандарта частоты с гелий-неоновым лазером и поглощающей ячейкой: 1 - зеркала оптического резонатора; 2 - ячейка лазера с активным газом; 3 - ячейка с поглощающим газом; 4 - приёмник излучения; 5 - система обратной связи.
Рис. 2. Структура спектральной линии газа в оптическом диапазоне: 1 - линии однородной ширины Г, излучаемые отдельными атомами и смещённые из-за эффекта Доплера; 2 - контур спектральной линии газа; 3 - резонансная кривая резонатора; ν0 - собственная частота резонатора; ν0 - частота, соответствующая вершине спектральной линии.
Рис. 3. "Выжигание провалов" в контуре спектральной линии.
Рис. 4. Слияние двух провалов в один.
Рис. 5. а. Появление минимума мощности в центре линии излучения сопровождается появлением максимума мощности в центре линии поглощения. б. Осциллограмма интенсивности бегущих волн гелий-неонового лазера с поглощающей метановой ячейкой в зависимости от частоты генерации; на центральной частоте спектральной линии метана у обеих волн возникают пики мощности.
Рис. 6. Схема оптического стандарта частоты, основанного на лазере с кольцевым резонатором.